Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4919725 | Engineering Structures | 2017 | 18 Pages |
Abstract
The BWIM methodology proposed in this paper is based on static analysis, and consists of the following components: Speed Detection, Lateral Load Distribution Determination, Influence Line Determination, Speed Correction, and Axle Weight Determination. In this paper, both numerical study and field study have been conducted. The numerical study is performed using finite element analysis to evaluate the performance of the BWIM results when measuring loads traveling at constant speed and variable speed. The results of the numerical study demonstrate the need of applying speed correction for BWIM analysis, and show the proposed speed correction procedure is able to improve BWIM accuracy for a variable speed vehicle to the similar level of accuracy as a constant speed vehicle. Field study is performed on a steel truss bridge located at the University of Alabama campus. With the obtained data on the bridge, the proposed BWIM methodology is applied to determine the axle weights of a vehicle moving at nonconstant speed. Results of the field study show that large error in axle weight prediction is expected when the vehicle is moving at nonconstant speed on the bridge, and correcting the response data using the proposed procedure can significantly improve the accuracy of axle weight predictions.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geotechnical Engineering and Engineering Geology
Authors
Andrew Lansdell, Wei Song, Brandon Dixon,