Article ID Journal Published Year Pages File Type
4920277 Engineering Structures 2017 11 Pages PDF
Abstract
Tsunamis are rare destructive phenomena caused by the sudden displacement of a large amount of water in the ocean and can result in enormous losses to coastal communities. The resilience of coastal communities to tsunamis can be improved through the use of risk-informed decision making tools. Performance-Based Engineering (PBE) approaches have been developed for different natural hazards including earthquake, fire, hurricane, and wind to perform probabilistic risk assessment for structures. In this study, a probabilistic Performance-Based Tsunami Engineering (PBTE) framework based on the total probability theorem is proposed for the risk assessment of structures subject to tsunamis. The proposed framework can be disaggregated into the different basic analysis phases of hazard analysis, foundation and structure characterization, interaction analysis, structural analysis, damage analysis, and loss analysis. An application example consisting of the risk assessment of a three-story steel moment frame structure was performed using the proposed framework. The probability of exceedance of the total replacement cost including structural, nonstructural, and content losses were computed.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, , , , ,