Article ID Journal Published Year Pages File Type
4920918 Fire Safety Journal 2017 9 Pages PDF
Abstract
This paper presents an experimental investigation on the transverse ceiling flame length and the temperature distribution of a sidewall confined tunnel fire. The experiments were conducted in a 1/6th scale model tunnel with the fire source placed against the sidewall, 0 m, 0.17 m and 0.35 m above the floor, respectively. Experiments of fire against a wall without a ceiling, 0.35 m above the floor in a large space, were also conducted as a control group. Results shows that for small heat release rate (HRR), the flame is lower than the ceiling and extends along the sidewall. With the increase of HRR and elevation of burner height, the flame gradually impinges on the ceiling and spreads out radially along it. The flame impingement condition and the flame shapes of the wall fire with and without ceiling are presented. From the viewpoint of the physical meaning of flame impinging on the ceiling, the horizontal flame length should be a function of the unburned part of the fuel at the impinging point. Based on the proportional relation between the flame volume and HRR, the effective HRR (Qef) at the ceiling is determined and the effective dimensionless HRR, Q*ef is defined to correlate the horizontal ceiling flame length. Additionally, predictive correlations of transverse ceiling temperature distribution are proposed for the continuous flame region, the intermittent flame region and the buoyant plume region under the ceiling, respectively.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , , , ,