Article ID Journal Published Year Pages File Type
4921381 Fusion Engineering and Design 2016 6 Pages PDF
Abstract
In order to explore the possibility of improvement of the He-cooled modular divertor with multiple jet cooling (HEMJ) concept including optimization of design parameter, an experimental study on heat transfer performance of the HEMJ divertor was performed by means of helium loop at Georgia Tech, in which the pressure, flow rate and temperature of helium pressure is up to 10 MPa, 8 g/s and 300 °C, respectively, under heat flux of 6 MW/m2 loaded by means of induction heater. Although the non-dimensional distance between jet nozzle and impingement surface H normalized by typical nozzle diameter D, H/D is 0.9 in the reference design of HEMJ, heat transfer experiments were carried out under the condition of H/D = 0.5 and 0.25 to enhance the heat transfer performance. In the case of H/D = 0.25, the averaged Nusselt number was increased by about 20% from the value for H/D = 0.5 in the case that the jet temperature less than 100 °C. By contraries, the averaged Nusselt number was decreased with increase in jet temperature which is larger than 200 °C in the H/D = 0.25 case. It is expected that the degradation of heat transfer performance with increasing the jet temperature is caused by the re-laminarization occurred near heat transfer surface.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , ,