Article ID Journal Published Year Pages File Type
4921420 Fusion Engineering and Design 2016 6 Pages PDF
Abstract
The functional deviations able to compromise system safety in the EU DEMO Primary Heat Transfer System (PHTS) with intermediate heat storage (IHS) based on molten salts are identified and compared to the deviations identified with PHTS without IHS. The resulting safety issues for the Balance of Plant (BoP) have been taken into account. Functional Failure Mode and Effects Analysis (FFMEA) is used to highlight the Postulated Initiating Events (PIE) of incident/accident sequences and to provide some safety insights during the preliminary design. The architecture of the system with IHS does not introduce new PIE with respect to the case without IHS, but it modifies some of them. In particular the two Postulated Initiating Events that are affected by the presence of IHS are the LOCA in the tubes of the HX between primary and intermediate circuit and the loss of heat sink for the first wall or the breeding zone. In fact the IHS introduces some advantages concerning the stability of the secondary circuit, but some weaknesses are associated to the physical-chemical nature of molten salts, especially oxidizing power, corrosive nature and risk of solidification. These issues can be managed in the design by the introduction of new safety functions.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , ,