Article ID Journal Published Year Pages File Type
4921426 Fusion Engineering and Design 2016 6 Pages PDF
Abstract
ELM-like thermal shocks and H/He particle exposure were subsequently applied on tungsten samples. Polished test specimens underwent in the JUDITH 1 electron beam facility 100 transient thermal events with a duration of 1 ms. The absorbed heat flux was 0.4 GW m−2 and 1.5 GW m−2, which is above the material's damage threshold. These experiments were done at room temperature and with the samples heated to 400 °C base temperature. Depending on the loading conditions the test specimens have either a crack network or showed surface roughening. The samples were then loaded in the GLADIS facility at different surface temperatures with a mixed H/He beam with a flux of 3.7 × 1021 m−2 s−1. Post-mortem analysis showed that the roughened surface did not alter the H/He induced surface modifications. In contrast to that on the test specimens that exhibited crack formation, phenomena such as bubble creation along the crack edge, formation of a shallow layer of nano-structures covering the crack opening, and the emerging of a porous structure which partially fills the crack are observed.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , , , , ,