Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4922504 | International Journal of Solids and Structures | 2017 | 29 Pages |
Abstract
The high-fidelity generalized method of cells micromechanics theory has been extended for the prediction of the effective property tensor and the corresponding local field distributions for composites whose constituents are governed by vector constitutive laws. As shown, the shear analogy, which can predict effective transverse properties, is not valid in the general three-dimensional case. Consequently, a general derivation is presented that is applicable to both continuously and discontinuously reinforced composites with arbitrary vector constitutive laws and periodic microstructures. Results are given for thermal and electric problems, effective properties and local field distributions, ordered and random microstructures, as well as complex geometries including woven composites. Comparisons of the theory's predictions are made to test data, numerical analysis, and classical expressions from the literature. Further, classical methods cannot provide the local field distributions in the composite, and it is demonstrated that, as the percolation threshold is approached, their predictions are increasingly unreliable.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Brett A. Bednarcyk, Jacob Aboudi, Steven M. Arnold,