| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4922748 | International Journal of Solids and Structures | 2016 | 11 Pages |
Abstract
In this paper, a constitutive model suitable for the analysis of Low Cycle Thermo-Mechanical Fatigue in metals is elaborated. The model is based on finite strain elastoplasticity coupled to continuum damage theory. It is embedded into a thermodynamical framework allowing to consistently capture the interplay between mechanics and thermal effects. It is shown that the fully coupled constitutive model can be re-written into a variationally consistent manner such that all (state) variables follow jointly and naturally from minimizing an incrementally defined functional. By discretizing this time-continuous functional in time by means of implicit integration schemes a numerically efficient implementation is proposed. In order to predict the temperature increase caused by plastic deformations realistically, the pre-loading history of the considered specimen is accounted for by non-zero initial internal variables. A comparison of the results predicted by the novel constitutive model to those corresponding to experiments (Ultimet alloy) shows that the predictive capabilities of the final model are excellent.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
M. Canadija, J. Mosler,
