Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4924380 | Journal of Sound and Vibration | 2017 | 15 Pages |
Abstract
Kurtosis-based impulsive component identification is one of the most effective algorithms in detecting localized faults in both gearboxes and rolling bearings. However, if localized faults exist in both gear tooth and rolling bearing simultaneously it is difficult to tell the differences between the two types of defects. As such, this study proposes a new method to solve the problem by using the meshing resonance and spectral kurtosis (SK) algorithms together. In specific, the raw signal is first decomposed into different frequency bands and levels, and then the corresponding Kurtogram and MRgram are calculated via the fault SK analysis and the meshing index. Furthermore, the resonance frequency bands induced by localized faults of the gear tooth and rolling bearing are separately identified by comparing the Kurtogram and the MRgram. Finally, the compound faults are respectively detected using envelope analysis. The effectiveness of the proposed method has been validated via both simulated and experimental gearboxes vibration signals with compound faults.
Related Topics
Physical Sciences and Engineering
Engineering
Civil and Structural Engineering
Authors
Tianyang Wang, Fulei Chu, Qinkai Han, Yun Kong,