Article ID Journal Published Year Pages File Type
4924403 Journal of Sound and Vibration 2017 11 Pages PDF
Abstract
We explore the use of structure-embedded Acoustic Black Holes (ABH) to design thin-walled structural components exhibiting broadband vibration attenuation characteristics. The ABH is a geometric taper with a power-law profile fully integrated into the structural component and able to induce a smooth and progressive decrease of both the velocity and the wavelength of flexural waves. Previous studies have shown these characteristics to be critical to enable highly efficient vibration attenuation systems. The performance of ABH thin-walled structures is numerically and experimentally evaluated under both transient and steady state excitation conditions. Both numerical and experimental results suggest that the proposed approach enables highly efficient and broadband vibration attenuation performance.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,