Article ID Journal Published Year Pages File Type
4924614 Journal of Sound and Vibration 2016 20 Pages PDF
Abstract
Two VIV models are considered: an elastically supported, inverted pendulum and a translating cylinder, both immersed in a flow and allowed to move transversely to the flow direction. Their reduced-order models are obtained in the form of (i) a single governing equation and (ii) two general coupled equations as well as the coupled lift-oscillator model. Comparisons are made with three existing models. Based on our theoretical results, and especially the reduced-order model, we conclude that the first principles development herein is a viable framework for the modeling of complex fluid-structure interaction problems such as vortex-induced oscillations.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,