Article ID Journal Published Year Pages File Type
4925070 Marine Structures 2017 12 Pages PDF
Abstract
This paper deals with the static lateral load-displacement response (p-y spring) of a pile slice in soil. The response is governed by a localised flow-around soil failure mechanism. A model is proposed that allows for construction of site-specific p-y springs by directly scaling the soil stress-strain response measured in laboratory tests. This model is based on an extensive parametric finite element study and can explicitly account for the effect of pile-soil interface roughness factor on both the strength and shape of the p-y spring. The model demonstrates excellent agreement with the p-y responses calculated numerically. An example application illustrates the capability of the model to predict the overall pile response by comparison with full three dimensional finite element analysis. The proposed model is compared with existing models in the literature, where similarities and differences are discussed and highlighted. The model provides practising engineers with a simple yet powerful approach to use site-specific p-y curves in design based on element soil behaviour measured in laboratory, without the need for advanced numerical analyses.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,