Article ID Journal Published Year Pages File Type
4925494 Nuclear Engineering and Design 2017 24 Pages PDF
Abstract
The proposed method is based on aliasing all spatial sources and sinks of momentum in the CFD domain as frictional losses in the system code domain. The internal velocity fields and, consequently, the inertial component of the pressure field are maintained consistent between the CFD and STH domains through a complementary velocity-matching interface. In this paper, coupled simulations are performed on Cartesian and cylindrical geometry with emphasis on consistency, convergence, and stability during transient scenarios. Results show that the presented domain overlapping coupling method is capable of adjusting pressure and velocity profiles of multi-dimensional system code solutions to match CFD solutions accurately. Important characteristics of transient simulations were found to include the background flow rate, specifically the stabilizing effect of viscous forces, as well as the time derivative of the flow rate. Under certain adverse conditions, the basic coupling method is found to produce unstable behavior. A stabilization method for adjusting CFD data is laid out and found to significantly improve the method's performance under the most challenging conditions. Recommendations are laid out for further improving the coupling via advanced time stepping methods.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,