Article ID Journal Published Year Pages File Type
4925499 Nuclear Engineering and Design 2017 16 Pages PDF
Abstract
In this paper, we present a methodology for predicting the spreading and combustion of liquid fuel released from an aircraft impact. Calculations were done with Fire Dynamics Simulator, and the aircraft impact was modeled as a spray boundary condition. The spray boundary condition was developed and validated by experiments using water-filled missiles. The predicted liquid front speeds were compared with water spray front propagation data, and the predicted lifetimes and diameters of fireballs were compared with experimental correlations. A full-scale simulation of the aircraft impact on a nuclear island was performed. The simulation results were used to assess the adequacy of physical separation in the case of aircraft impact. We concluded that 10%-20% of the fuel involved in the crash will accumulate in pools around the building.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,