Article ID Journal Published Year Pages File Type
4926030 Renewable Energy 2017 32 Pages PDF
Abstract
This article presents a study on the performance of a forced convective multi-pass solar air heating collector (MPSAHC) system assisted with granite as a sensible energy storing matrix. Experimental drying of Roselle was carried out in August 2015 at Solar Energy Research Site of Universiti Teknologi PETRONAS, Malaysia (4.385693° N and 100.979203 S). The present investigation was conducted under the daily average relative humidity, solar irradiance, ambient temperature and wind speed of 64.5%, 635.49 Wm−2, 32.24 °C, and 0.81 ms−1, respectively. An average drying rate of 33.57 g (kg m2 h)−1 was achieved while the system optical efficiency, collector efficiency, drying efficiency and moisture pickup efficiency of 70.53%, 64.08%, 36.22% and 66.95% were obtained, respectively. MPSAHC dryer was 21 h faster with fair color retention when compared to open sun drying approach (OSDA) that was conducted together under the same weather condition. Techno economic analysis reflected a payback period of 2.14 years. However, drying efficiency could be improved if the inlet air humidity can be controlled to favor drying operation.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,