Article ID Journal Published Year Pages File Type
4926306 Renewable Energy 2017 41 Pages PDF
Abstract
We developed in this study an efficient production process of SCO from sugarcane bagasse hydrolysates using Y. lipolytica. We described a dynamic flux balance model strategy based on a genome-scale metabolic model of Y. lipolytica and SCO fermentation kinetics that applied for rational design of optimized fed-batch process with high single cell oil accumulation. Furthermore, metabolic evolution approach with buoyancy screening was implemented for selecting a high lipid producing yeast strain. The efficient conversion process combined model-based fed-batch process design and evolution-based strain optimization enabling high SCO titer of 45 g/L and 0.25 g-SCO/g-glucose yield from hydrolysates, a 6-fold improvement in titer and 1.4-fold improvement in yield over batch wild-type process. Through this combinatorial optimization effort, we demonstrated the cost-effective, lignocellulose-based SCO process that could meet techno-economic feasibility providing a sustainable alternative to vegetative oils for biofuels and oleochemicals synthesis.
Keywords
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,