Article ID Journal Published Year Pages File Type
4927028 Soil Dynamics and Earthquake Engineering 2017 14 Pages PDF
Abstract
Tectonic ground deformations in the near-fault region cause major damage to buildings and infrastructure. To characterize ground deformation demands on structures, a novel stochastic approach to evaluate the ground deformations of tectonic origin is developed by combining probabilistic models of earthquake source parameters, synthetic earthquake slip models, and Okada equations for calculating the deformation field due to a fault movement. The output of the method is the probability distribution of ground deformations at a single location or differential ground deformations between two locations. The derived probabilistic models can be employed as input to advanced structural models and analyses. The method is illustrated for the 16 April 2016 Kumamoto earthquake in Japan. By comparing simulated ground deformations with observed deformations at multiple sites, a set of refined source models is first derived and then used to investigate the detailed earthquake characteristics of the event and to develop probability distributions of tectonic ground deformations at target sites.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
,