Article ID Journal Published Year Pages File Type
4927192 Soil Dynamics and Earthquake Engineering 2017 12 Pages PDF
Abstract
This paper presents two-dimensional (2D) nonlinear dynamic finite element (FE) modeling of a large-scale shake table test conducted at the E-Defense shake table facility in Japan. This study explores the efficiency of 2D effective stress analyses to predict the behavior of soil-pile systems subjected to liquefaction and lateral spreading using the library of existing constitutive models and the prescribed parameters. The coupled soil-water FE model was developed in OpenSees and the analysis results are compared with measured data from the shake table experiment with the main emphasis on the response of liquefied soil and the demand applied to the piles as well as the sheet-pile quay wall. By examining the numerical analysis results, it is demonstrated that the FE model was able to reproduce the shake table model behavior with reasonable accuracy. Lastly, a mitigation strategy was modeled to investigate its effectiveness to reduce the demand on the soil-pile system.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,