Article ID Journal Published Year Pages File Type
4927667 Soils and Foundations 2016 11 Pages PDF
Abstract
Active clays are known to possess an aggregated structure, which justifies the use of double-porosity models to reproduce their behavior. Simulation of chemo-mechanical processes requires instead the introduction of a relevant number of coupled mechanical and transport laws. It follows that double porosity models for coupled chemo-hydro-mechanical require a relevant number of parameters, which are twice those needed by single porosity models. The aim of this work is to evaluate the consequences of using single- and double-porosity frameworks to simulate the transient chemo-mechanical processes in active clays, showing how models based on simple microstructural considerations can help in performing simulations which are a reasonable trade-off between simplicity and accuracy. In particular with single porosity models, it might be necessary introducing parameters having a doubtful meaning to describe adsorption-desorption processes. This type of assumption is not required by double porosity models. While for compacted clays these conclusions are corroborated with microstructural observations, the same hold also when reproducing the behavior of an active clay at a remolded condition. In this latter case the delay of swelling with respect to desalinization, typical of remolded conditions, was satisfactorily reproduced only with double porosity models.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geotechnical Engineering and Engineering Geology
Authors
, ,