Article ID Journal Published Year Pages File Type
4928608 Thin-Walled Structures 2017 16 Pages PDF
Abstract
The paper reports the results of a study focussed on the development of more reliable approaches for designing racks against earthquakes. In particular, a wide range of cases of practical interest for routine design has been defined, which is comprised of racks that differ in terms of geometric layout and component performance. For each of them, the load carrying capacity corresponding to different values of the peak ground acceleration has been evaluated via two alternative design approaches: the well-known modal response spectrum analysis approach (MRSA) and an advanced strategy combining non-linear time-history analyses with the assessment of the damage in joints due to the cyclic excursions in plastic range (NLTH-LCF). Based on 56 design cases, requiring in total 1512 structural analyses, the proposed outcomes allow for a direct appraisal of the differences in load carrying capacity. At the same time, the influence of modelling the cyclic joint behavior is highlighted, with reference also to the change in key behavioural parameters, such as flexural strength and rotational stiffness.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,