Article ID Journal Published Year Pages File Type
4928698 Thin-Walled Structures 2017 11 Pages PDF
Abstract
Recently, requirements for data regarding crushing force have motivated researchers to investigate the crushing behaviour of tubes. The present work aims to study the crushing of multi-cell triangular tubes made of aluminium alloy AA6060T4 using theoretical and numerical analyses under multiple impact loadings. By dividing the profile into several basic angular elements and using the Improved Simplified Super Folding Element (ISSFE) theory, theoretical equations of the mean crushing/horizontal force, and the mean bending moment are proposed to calculate the mean crushing strength of these sections. It is found that the number of “cells” in a tube's structure and to a certain extent the load angle have a considerable effect on the Specific Energy Absorption (SEA), and Mean Crushing Force (MCF). Numerical analyses were conducted, and the simulation results show a strong correlation between the crush response and the cross-section of the tubes. The analytical predictions for the MCF are compared with the FE results.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
,