Article ID Journal Published Year Pages File Type
4932799 Neurobiology of Aging 2017 38 Pages PDF
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein. In addition to facilitating neurodegeneration, mutant htt is implicated in HD-related alterations of neurotransmission. Previous data showed that htt can modulate N-type voltage-gated Ca2+ channels (Cav2.2), which are essential for presynaptic neurotransmitter release. Thus, to elucidate the mechanism underlying mutant htt-mediated alterations in neurotransmission, we investigated how Cav2.2 is affected by full-length mutant htt expression in a mouse model of HD (BACHD). Our data indicate that young BACHD mice exhibit increased striatal glutamate release, which is reduced to wild type levels following Cav2.2 block. Cav2.2 Ca2+ current-density and plasma membrane expression are increased in BACHD mice, which could account for increased glutamate release. Moreover, mutant htt affects the interaction between Cav2.2 and 2 major channel regulators, namely syntaxin 1A and Gβγ protein. Notably, 12-month old BACHD mice exhibit decreased Cav2.2 cell surface expression and glutamate release, suggesting that Cav2.2 alterations vary according to disease stage.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , , , ,