Article ID Journal Published Year Pages File Type
4932874 Neurobiology of Aging 2017 10 Pages PDF
Abstract

The g-ratio, equal to the ratio of the inner-to-outer diameter of a myelinated axon, is associated with the speed of conduction, and thus reflects axonal function and integrity. It is now possible to estimate an “aggregate” g-ratio in vivo using MRI. The aim of this study was to assess the variation of the MRI-derived fiber g-ratio in the brain of healthy individuals, and to characterize its variation across the lifespan. Thirty-eight healthy participants, aged between 20 and 76, were recruited. Whole-brain g-ratio maps were computed and analyzed voxel-wise. Median tract g-ratio values were also extracted. No significant effect of gender was found, whereas age was found to be significantly associated with the g-ratio within the white matter. The tract-specific analysis showed this relationship to follow a nearly-linear increase, although the slope appears to slow down slightly after the 6th decade of life. The most likely interpretation is a subtle but consistent reduction in myelin throughout adulthood, with the density of axons beginning to decrease between the 4th and 5th decade.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , , ,