Article ID Journal Published Year Pages File Type
4979351 Journal of Hazardous Materials 2017 34 Pages PDF
Abstract
Biogenic manganese oxides (BioMnOx) have attracted considerable attention as active oxidants, adsorbents, and catalysts. This study investigated the characteristics of algae-generated BioMnOx and determined its oxidative activity towards bisphenol A (BPA), an endocrine disrupter. Amorphous nanoparticles with a primary Mn valency of +3 were found in BioMnOx produced by Desmodesmus sp. WR1. The mechanism might be that algal growth created conditions favorable to Mn oxidation through increasing DO and pH. Initial Mn2+ concentrations of 6, 30, and 50 mg L−1 produced a maximum of 5, 13, and 11 mg L−1 of BioMnOx, respectively. Mn2+-enriched cultures exhibited the highest BPA removal efficiency (∼78%), while controls only reached about 27%. BioMnOx may significantly promote BPA oxidation in algae culture, enhancing the accumulation of substrates for glycosylation. Moreover, continuous BioMnOx increase and Mn2+ decrease during BPA oxidation confirmed Mn oxide regeneration. In conclusion, Mn oxide formation by microalgae has the potential to be used for environmental remediation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , , , , , ,