Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4979680 | Journal of Hazardous Materials | 2017 | 37 Pages |
Abstract
Arsenic (As) biogeochemistry coupled with iron (Fe) and sulfur (S) was studied using columns packed with As(V)-contaminated sediments under two phases: a reduction phase followed by an oxidation phase. During the reduction phase, four identical columns inoculated with G. sulfurreducens were stimulated with 3Â mM acetate for 60Â days. The As(III) in the effluent rapidly increased then gradually decreased. The Fe(II) and sulfate concentration indicated ferrous sulfide precipitation inside the column after day 14 and X-ray absorption near edge structure spectra showed that As(III) was enriched at the column outlet. The genera Desulfosporosinus and Anaeromyxobacter as well as the Geobacter inoculum played a primary role in As reduction. During the oxidation phase, dissolved oxygen was consumed by heterotrophic aerobes belonging to the phylum Cloroflexi in the column with acetate, resulting in more As in the effluent. When only nitrate was injected, sulfur-oxidizing bacteria such as Thiobacillus thioparus instantly oxidized the sulfide formed during the first phase, resulting in less As(V) in the aqueous phase compared to the column with dissolved oxygen alone. This study showed that redox gradients and dynamics linked to Fe and S biogeochemistry have an important role in controlling As mobility in subsurface environments.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Hee Sun Moon, Bo-A Kim, Sung Pil Hyun, Yoon-Ho Lee, Doyun Shin,