Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4980832 | Process Safety and Environmental Protection | 2017 | 30 Pages |
Abstract
The oxidation of acetaminophen (ACT) was investigated in the catalytic ozonation process (COPs) an ozonation process with modified MgO (m-MgO) nanoparticles as catalyst. The effect of main operational variables including solution pH and concentration of m-MgO, ACT and ozone concentration was investigated on ACT degradation in the COP. The complete degradation and 94% mineralization of 50Â mg/L ACT obtained at the solution pH around 5, MgO concentration of 2Â g/L and ozone concentration of 1.8 mgO3/min, within a reaction time of 30Â min. The cytotoxicity fresh and COP-treated ACT solution was assessed using the human embryonic kidney (HEK) cultured cells. The results indicated that treating ACT solution in the m-MgO/O3 process under optimum experimental conditions as compared to the fresh (untreated) ACT solution considerably increased the viability of HEK cells. Therefore, the COP with m-MgO nanoparticle as the catalyst is a promising and efficient process for the oxidation and detoxification of ACT as a model of emerging contaminants in the contaminated water.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Health and Safety
Authors
Kamyar Yaghmaeian, Gholamreza Moussavi, Ali Mashayekh-Salehi, Anoshiravan Mohseni-Bandpei, Mohammad Satari,