Article ID Journal Published Year Pages File Type
4986650 Wear 2017 10 Pages PDF
Abstract
The objective of the paper is the quantification of effects of erodent flow kinetic energy and exposure time on the erosion of cement-based composites with high-speed hydro-abrasive jets. The erodent flow kinetic energy is varied due to changes in erodent velocity, traverse rate and erodent particle mass-flow rate. For a given traverse rate, the relationship between volumetric erosion rate and erodent flow kinetic energy follows a power function with power exponents between 0.49 and 0.66. The kinetic energy of the erodent flow is not a sufficient measure for the material removal capacity of high-speed hydro-abrasive flow. A critical exposure time must be realized in order to eliminate traverse rate effects. Exposure time effects are characterized with a Weibull-type function, whereby the shape parameter k of the function depends on erosion mode and material response. If incremental erosion modes dominate the material removal process: k>1. If continuous erosion modes control the material removal process: k≤1. It is supposed that k exceeds unity if a threshold fracture toughness of the composites is exceeded.
Keywords
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
,