| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4986704 | Wear | 2017 | 9 Pages |
Abstract
Friction and wear behaviors of in-situ Cf/Al2O3, Cf/Al2O3, and Al2O3 were examined under dry sliding, water, PAO oil and PAO+carbon nanotube (CNT) grease at applied load of 6.86 N by ball-on-disk sliding tribotester. Both in-situ Cf/Al2O3 and Cf/Al2O3 were fabricated by hot-press sintering in vacuum. In-situ Cf/Al2O3 used cheap and flexible pre-oxidized polyacrylonitrile fibers to in-situ transform into Cf during sintering and that Cf/Al2O3 used commercial Cf directly. The experimental results indicate that in-situ Cf/Al2O3 has comparable friction-reduction ability with Cf/Al2O3 under dry and water lubrication. Specifically, friction coefficient μ of in-situ Cf/Al2O3 reduces from 0.45 to 0.39 with time and fluctuates around 0.17 under dry and water lubrication respectively, while μ of Al2O3 is about 0.52 and varies around 0.35. Meanwhile, in-situ Cf/Al2O3 shows best wear-resistance among the three specimens with slightest spalling under dry and water lubrication because in-situ Cf has good interfacial bonding with matrix. However, lubrication property of carbon fibers are hidden by good lubricants (PAO and PAO+CNT grease), the worn surfaces of all of three specimens look like polished. All these results indicate that in-situ Cf/Al2O3 should be a better and cost-effective self-lubricated composite.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Colloid and Surface Chemistry
Authors
Jie Ren, Huahui Chen, Biao Ma, Fu Zhao, Chunyang Wang, Haiping Hong, Yuan Li, Xingliang He, Xinqi Chen, Ruowei An,
