Article ID Journal Published Year Pages File Type
4986876 Wear 2016 30 Pages PDF
Abstract
In the current approach, a series of three dimensional (3D) FE simulations were initially performed for different combinations of cutting data and tool flank geometries. The obtained results were used to establish the quadratic relation between the input variables and the responses required for tool wear prediction, such as interface temperature. Later, the flank wear rate equation was developed based on the relation between the volume loss due to wear and the dimensions of the worn tools. The results of the FE simulations were finally integrated with the established wear rate equation to estimate the flank wear evolution. The credibility of the presented approach was then assessed through estimation of the flank wear evolution rate for a wide range of cutting conditions. The predicted flank wear rates showed a good agreement with experimental measurements in most cases. The reasons for minor deviations from the experimental results were finally outlined.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , ,