Article ID Journal Published Year Pages File Type
4986945 Wear 2016 10 Pages PDF
Abstract
In this work, the tribological wear mechanisms of the surfaces of glassy carbon tools used for fused silica molding were investigated. Both an experimental study and a finite element method (FEM) simulation are presented, and their results were correlated. In the experimental study, the progressive wear process on glassy carbons surfaces was investigated using scanning electron microscopy (SEM). In addition, atomic force microscope (AFM) measurements of the sizes of surface defects such as notches were analyzed. Experimental results were compared with a FEM simulation of the tensile stresses and sliding velocity that arise during each fused silica molding cycle. Using this approach, the dimensions of wear can be calculated after any given number of molding cycles and the lifetime of the molding tools can be predicted.
Related Topics
Physical Sciences and Engineering Chemical Engineering Colloid and Surface Chemistry
Authors
, , , , , ,