Article ID Journal Published Year Pages File Type
4989136 Journal of Membrane Science 2017 13 Pages PDF
Abstract

•Alkylamine-functionalized GO that could be dispersed in chloroform was prepared.•Free-standing MMMs were prepared with PIM-1 and these graphene-like materials.•The MMMs were tested for ethanol and butanol recovery from water via pervaporation.•0.1 wt% of filler showed the highest improvement in selectivity towards butanol.

Organophilic mixed matrix membranes (MMMs) have been fabricated with the polymer of intrinsic microporosity PIM-1 and graphene oxide (GO) derivatives for the recovery of 1-butanol and ethanol from aqueous solutions via pervaporation (PV). Graphene oxide (GO) has been synthesized in solution through a modified Hummers' method, functionalized with alkylamines, and further reduced. The use of two alkylamines with chains of different lengths, octylamine (OA) and octadecylamine (ODA) −8 and 18 carbons, respectively - has been evaluated and the functionalized GO materials have been used as fillers in MMMs. The membranes have been prepared by casting-solvent evaporation of PIM-1/GO derivative solutions at room temperature, and a range of characterization techniques have been used to interpret their structure and relate it to their separation performance. Electron microscopy has been carried out to determine the morphology of the membranes and the dispersion of the functionalized GO flakes in the polymer matrix. Moreover, the membranes have been characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and contact angle. Separation of alcohol from two binary mixtures composed of ethanol (EtOH)/water and butanol (BtOH)/water, containing 5 wt% of alcohol, have been performed. Under these conditions, the incorporation of graphene-like fillers at relatively low concentrations shows an increase in average separation factor for butanol (βBtOH/H2O) from 13.5 for pure PIM-1 membranes to, in some cases, more than double for the MMMs; with the addition of 0.1 wt% of reduced amine-functionalized GO βBtOH/H2O reaches 32.9 and 26.9 for the short-chain (OA) and the long-chain (ODA) alkylamines, respectively.

Graphical abstractDownload high-res image (193KB)Download full-size image

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , , , , , , ,