Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4992513 | Experimental Thermal and Fluid Science | 2017 | 41 Pages |
Abstract
This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels and is widely used in industry as the heat transfer unit of a heat exchanger. Firstly, the enhanced heat transfer performances by individually using one enhancement technique were investigated by testing Nusselt number, friction factor and performance evaluation criterion (PEC). In this section, five MMFTs with different micro fin numbers (N = 0, 1, 2, 3 and 4) and nanofluids with three volume concentrations (Ï = 0.005%, 0.01% and 0.1%) were used as test sections and working fluids respectively. Secondly, the experiments using two combined enhancement technique were performed. By using conjunctively two enhancement techniques, Nusselt number increases by up to 158% at about Re = 3600 and the maximum PEC value can reach 2.0 at Re = 5150. Finally, an optimal heat transfer scheme was proposed based on test data.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Ji Zhang, Yanhua Diao, Yaohua Zhao, Yanni Zhang,