Article ID Journal Published Year Pages File Type
4992783 Experimental Thermal and Fluid Science 2017 10 Pages PDF
Abstract
An accurate determination of the catalytic property of thermal protection materials is crucial to design reusable atmospheric entry vehicles. This property is determined by combining experimental measurements and simulations of the reactive boundary layer near the material surface. The inductively-driven Plasmatron facility at the von Karman Institute for Fluid Dynamics provides a test environment to analyze gas-surface interactions under effective hypersonic conditions. In this study, we develop an uncertainty quantification methodology to rebuild values of the gas enthalpy and material catalytic property from Plasmatron experiments. A non-intrusive spectral projection method is coupled with an in-house boundary-layer solver, to propagate uncertainties and provide error bars on the rebuilt gas enthalpy and material catalytic property, as well as to determine which uncertainties have the largest contribution to the outputs of the experiments. We show that the uncertainties computed with the methodology developed are significantly reduced compared to those determined using a more conservative engineering approach adopted in the analysis of previous experimental campaigns.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , , , , ,