Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4992791 | Experimental Thermal and Fluid Science | 2017 | 19 Pages |
Abstract
This paper reports a fundamental experimental investigation of the start-up characteristics of heat pipes using a dedicated molten-salt mixture as the working fluid. Based on four single salt, i.e. NaNO3(AR), KNO3(AR), LiNO3(AR) and Ca(NO3)2(AR), a quaternary molten-salt working fluid was developed and charged at different masses into four heat pipes with the same dimensions of 980 mm in length and 22 mm in diameter. A parallel comparison on the start-up performance of these heat pipes was then conducted to observe the influence of the charging mass and the inclination angle under the consistent lab-controlled conditions. The experimental results showed the heat pipe with molten-salt charge of 40 g responded much quicker than those with molten salt charge of 60 g, 70 g and 80 g respectively; meanwhile, the molten-salt heat pipe achieved the maximum condensation temperature at inclination angle of 50°. Comparing to the conventional naphthalene heat pipe, the dedicated molten-salt heat pipe had a much shorter start-up time when they were charged with the same amount of 40 g. The overall research result is expected to provide certain guidance for further design and operation of molten-salt heat pipe in high-and-medium-temperature heat transfer and storage scenarios.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Yaxuan Xiong, Li Bo, Meng Qiang, Yuting Wu, Xingxing Zhang, Peng Xu, Chongfang Ma,