Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4992827 | International Communications in Heat and Mass Transfer | 2017 | 6 Pages |
Abstract
Liquid nitrogen, as a coolant, is generally applied in cell vitrification cryopreservation. It takes heat from the carrier with cell samples through its violent evaporation on the carrier surface. As a result, the temperature of the carrier plunges dramatically. This article focuses on the unsteady evaporation heat transfer characteristics of liquid nitrogen on a microstructured surface etched into the frozen carrier surface at a high superheat level. The heat flux and evaporation heat transfer coefficient of liquid nitrogen were investigated using a lumped capacitance method. The experimental results showed that the cooling rate of the thin film evaporation on the microstructured surface is obviously higher than that of pool boiling, which is currently being used for cell cryopreservation. The heat flux and the evaporation heat transfer coefficient work together to present a parabolic trend with the superheat decreasing during this heat transfer process. Besides, the microstructure of the surface has an important effect on the evaporation heat transfer of liquid nitrogen. The larger the thin film evaporation zone is, the higher the heat transfer coefficient is. The current investigation results in a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Fengmin Su, He Xu, Nannan Zhao, Yangbo Deng, Hongbin Ma,