Article ID Journal Published Year Pages File Type
4992833 International Communications in Heat and Mass Transfer 2017 13 Pages PDF
Abstract
An experimental and numerical investigation is conducted to study the conjugated heat transfer performance on the leading edge of a wedge-shaped concave wall subjected to external cold flow and internal hot jets impingement. A corrugated impinging plate with an extended front-extended port inside the concave cavity is proposed for the purpose of heat transfer enhancement. The effects of corrugation length-to-diameter ratio (Hj/d) ranging from 5 to 11 and width-to-diameter ratio (Wj/d) ranging from 2.5 to 6 on the conjugated heat transfer performance are examined under some representative jet Reynolds numbers (Rej) in the range of 7900-31,700. The results show that the corrugated impinging plate has a significant impact on improving the conjugated heat transfer performance in the vicinity of concave wall leading edge. The presence of corrugation plays two roles by reducing the jet impinging distance on one hand and aggravating the jet confinement on the other hand. Therefore, it produces more complicated jet impinging flow and convective heat transfer behaviors than the baseline case without corrugation. According to the tested results, the specified area-averaged heating effectiveness is increased approximately 6.3%-18.8% under Rej = 7900 and 2.5%-9.4% Under Rej = 31,700 respectively by increasing the corrugation length when Wj/d is fixed as 2.5. The specified area-averaged heating effectiveness is increased approximately 16.1%-22.1% under Rej = 7900 and 7.7%-12.7% under Rej = 31,700 respectively by increasing the corrugation width when Hj/d is fixed as 9. In general, the corrugation with larger length and width seems to perform the better heating effectiveness over the entire concave surface. The enhancement of heating effectiveness related to the baseline case behaves more significantly under a smaller jet Reynolds number.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,