Article ID Journal Published Year Pages File Type
4993237 International Journal of Heat and Fluid Flow 2016 11 Pages PDF
Abstract
In this paper, numerical simulations of two dimensional bubble rising in the presence of electrohydrodynamic forces are presented. The physical properties of the bubble and the background fluid are adjusted to resemble an oil-water system. The numerical technique utilized to discretize the governing equations is the Lagrangian Incompressible Smoothed Particle Hydrodynamics (ISPH) method. A single bubble is subjected to an electric field using a leaky dielectric model under different values of Reynolds, Bond and electrical Capillary numbers. The results show that the bubble elongates in the direction of the electric field forming a prolate shape. The increase in the values of Reynolds and electrical Capillary numbers enhances prolate deformation of the bubble, but raising the Bond number reduces the prolateness of the bubble. The interaction of a bubble pair is also investigated for various configurations. If the bubbles are placed such that their centroids are vertically in-line, they tend to merge due to the initial prolate deformation. However, the bubbles do not merge for off center-oriented cases.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,