Article ID Journal Published Year Pages File Type
4994874 International Journal of Multiphase Flow 2017 50 Pages PDF
Abstract
The strong performance of BDF2 is illustrated via several test cases related to the Kelvin-Helmholtz instability. A novel concept called Discrete Flow Pattern Map (DFPM) is introduced which describes the effective well-posed unstable flow regime as determined by the discretization method. Backward Euler introduces so much numerical diffusion that the theoretically well-posed unstable regime becomes numerically stable (at practical grid and timestep resolution). BDF2 accurately identifies the stability boundary, and reveals that in the nonlinear regime ill-posedness can occur when starting from well-posed unstable solutions. The well-posed unstable regime obtained in nonlinear simulations is therefore in practice much smaller than the theoretical one, which might severely limit the application of the two-fluid model for simulating the transition from stratified flow to slug flow. This should be taken very seriously into account when interpreting results from any slug-capturing simulations.
Related Topics
Physical Sciences and Engineering Chemical Engineering Fluid Flow and Transfer Processes
Authors
, , ,