Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4995034 | International Journal of Multiphase Flow | 2017 | 13 Pages |
Abstract
Flow-Induced Vibration (FIV) is the most critical dynamic issue in the design of shell-and-tube heat exchangers. This fluid-structure phenomenon may generate high amplitude vibration of tubes or structural parts, which leads to fretting wear between the tubes and supports, noise or even fatigue failure of internal components. The study of this phenomenon is more challenging if considered that two-phase crossflow exists in many shell-and-tube heat exchangers. In this framework, the analysis of the influence of void fraction and flow patterns on FIV is of particular interest. In fact, void fraction and flow patterns do affect the dynamic parameters involved in tube vibration and, hence, the current vibration mechanism. However, in spite of the importance of devices subjected to two-phase flow, FIV under these conditions have not been entirely understood. In this paper, the results of an extensive experimental campaign, aiming at validating the flow pattern maps found in open literature, are presented. For this purpose, a normal triangular (transversal pitch per diameter ratio of 1.26) tube bundle subjected to two-phase air - water vertical upward crossflow is used. Structural sensors are used to measure the tube dynamic responses and estimate parameters such as hydrodynamic mass and damping ratios, which are strongly dependent on flow conditions. Theoretical models and data previously published are compared with the present experimental results, showing good agreement.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
Ricardo Álvarez-Briceño, Fabio Toshio Kanizawa, Gherhardt Ribatski, Leopoldo P.R. de Oliveira,