Article ID Journal Published Year Pages File Type
4997505 Bioresource Technology 2017 35 Pages PDF
Abstract
The aim of this study was to develop an efficient bioanode microbial electrosynthesis system (MES) to convert carbon dioxide into acetate using bioenergy from the wastewater. The bioanode MESs were constructed using proton exchange membrane (PEM) and bipolar membrane (BPM) as separator, respectively, and operated under different voltages (i.e., 0.8, 1.0, 1.2, and 1.4 V). Since BPM could dissociate H2O into H+ and OH− in situ to buffer the pH change in the chambers, the BPM-MES achieved 238% improvement in cathodic acetate production rate, 45% increase in anodic substrate removal efficiency, and more than five times enhancement in current output, as compared to the PEM-MES. The biomass on the surface of anode and cathode, and the relative abundance of Acetobacterium in the cathode of BPM-MES was higher than that in PEM-MES. Bioanode MES with BPM should be a useful microbial electrosynthesis strategy for acetate production using bioenergy from wastewater treatment.
Related Topics
Physical Sciences and Engineering Chemical Engineering Process Chemistry and Technology
Authors
, , , , ,