Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4999688 | Automatica | 2017 | 8 Pages |
Abstract
This paper presents a stabilizing tube-based MPC synthesis for LPV systems. We employ terminal constraint sets which are required to be controlled periodically contractive. Periodically (or finite-step) contractive sets are easier to compute and can be of lower complexity than “true” contractive ones, lowering the required computational effort both off-line and on-line. Under certain assumptions on the tube parameterization, recursive feasibility of the scheme is proven. Subsequently, asymptotic stability of the origin is guaranteed through the construction of a suitable terminal cost based on a novel Lyapunov-like metric for compact convex sets containing the origin. A periodic variant on the well-known homothetic tube parameterization that satisfies the necessary assumptions and yields a tractable LPV MPC algorithm is derived. The resulting MPC algorithm requires the on-line solution of a single linear program with linear complexity in the prediction horizon. The properties of the approach are demonstrated by a numerical example.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Jurre Hanema, Mircea Lazar, Roland Tóth,