Article ID Journal Published Year Pages File Type
5000858 Digital Communications and Networks 2017 6 Pages PDF
Abstract
Time-varying network induced delay in the communication channel severely affects the performance of closed loop network control systems. In this paper, a novel idea of compensating the fractional time varying communication delay in the sliding surface is presented. The fractional time delay in the sensor to controller and controller to actuator channel is approximated using the Thiran approximation technique to design the sliding surface. A discrete-time sliding mode control law is derived using the proposed surface that compensates fractional time delay in sensor to controller and controller to actuator channels for uncertain network control systems. The sufficient condition for closed loop stability of the system is derived using the Lyapunov function. The efficacy of the proposed strategy is supported by the simulation results.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, ,