Article ID Journal Published Year Pages File Type
5001259 Electric Power Systems Research 2017 10 Pages PDF
Abstract

•Higher DC voltage operation of MMC incorporating third harmonic injection is proposed.•DC voltage is increased by 13.4% while SM number per arm and SM capacitor voltage remain unchanged.•DC current is lowered and DC transmission loss is expected to reduce by 22.2%.•Station conduction losses, semiconductor current stresses, and phase energy variation are also reduced.

This research investigates third harmonic injection applied to a modular multilevel converter (MMC) to generate a higher DC voltage. This is achieved using a proposed novel control scheme that activates existing submodules (SMs) in the converter arms. The technique is fundamentally different to, and does the reverse of, the well-known third harmonic injection techniques utilized to increase the AC output voltage in three-phase converter systems for a given DC link voltage. In the proposed scheme, the number of inserted SMs in each converter leg is greater than the number of SMs per arm, whence the MMC can operate with a higher DC link voltage while the SM number per arm and their capacitor voltages remain unchanged. This lowers the DC current and the DC transmission loss is significantly reduced by 22%. Station conduction losses with the operational scheme are lowered by 2.4%. The semiconductor current stresses are also lowered due to the reduced DC component of arm currents. Additionally, the phase energy variation is reduced by 18%, which benefits circulating current control. The operating principles are presented in detail and mathematical models for conduction losses, energy variation, and circulating voltage are derived. Simulation of a point-to-point HVDC system demonstrates the effectiveness of the proposed MMC operational scheme.

Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,