Article ID Journal Published Year Pages File Type
5001323 Electric Power Systems Research 2016 9 Pages PDF
Abstract
This paper proposes a new method based on artificial neural networks for reducing the torque ripple in a non-sinusoidal synchronous reluctance motor. The Lagrange optimization method is used to solve the problem of calculating optimal currents in the d-q frame. A neural control scheme is then proposed as an adaptive solution to derive the optimal stator currents giving a constant electromagnetic torque and minimizing the ohmic losses. Thanks to the online learning capacity of neural networks, the optimal currents can be obtained online in real time. With this neural control, each machine's parameter estimation errors and current controller errors can be compensated. Simulation and experimental results are presented which confirm the validity of the proposed method.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,