Article ID Journal Published Year Pages File Type
5002426 IFAC-PapersOnLine 2016 6 Pages PDF
Abstract
To increase understanding of the interaction between phenotype and genotype x environment to improve crop performance, large amounts of phenotypic data are needed. Studying plants of a given strain under multiple environments can greatly help to reveal their interactions. To collect the labor-intensive data required to perform experiments in this area, a Mecanum-wheeled, magnetic-tape-following indoor rover has been developed to accurately and autonomously move between and inside growth chambers. Integration of the motor controllers, a robot arm, and a Microsoft Kinect (v2) 3D sensor was achieved in a customized C++ program. Detecting and segmenting plants in a multi-plant environment is a challenging task, which can be aided by integration of depth data into these algorithms. Image-processing functions were implemented to filter the depth image to minimize noise and remove undesired surfaces, reducing the memory requirement and allowing the plant to be reconstructed at a higher resolution in real-time. Three-dimensional meshes representing plants inside the chamber were reconstructed using the Kinect SDK's KinectFusion. After transforming user-selected points in camera coordinates to robot-arm coordinates, the robot arm is used in conjunction with the rover to probe desired leaves, simulating the future use of sensors such as a fluorimeter and Raman spectrometer. This paper reports the system architecture and some preliminary results of the system.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,