Article ID Journal Published Year Pages File Type
5002920 IFAC-PapersOnLine 2016 6 Pages PDF
Abstract
We present a methodology based on multi-objective optimization to perform parameter estimation that can fully harness to ensembles of local models for biological circuits. The methodology uses a global multi-objective evolutionary algorithm and a multi-criteria decision making strategy to select the most suitable solutions. Our approach finds an approximation to the Pareto optimal set of model parameters that correspond to each experimental scenario. Then, the Pareto set was clustered according to the experimental scenarios. This, in turn, allows to analyze the sensitivity of model parameters for different scenarios. Finally, we show the methodology applicability through the case study of a genetic incoherent feed-forward circuit, under different concentrations of the inducer input signal.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,