Article ID Journal Published Year Pages File Type
5003993 ISA Transactions 2016 11 Pages PDF
Abstract
Multivariate statistical methods have been widely applied to develop data-based process monitoring models. Recently, a multi-manifold projections (MMP) algorithm was proposed for modeling and monitoring chemical industrial processes, the MMP is an effective tool for preserving the global and local geometric structure of the original data space in the reduced feature subspace, but it does not provide orthogonal basis functions for data reconstruction. Recognition of this issue, an improved version of MMP algorithm named orthogonal MMP (OMMP) is formulated. Based on the OMMP model, a further processing step and a different monitoring index are proposed to model and monitor the variation in the residual subspace. Additionally, a novel variable contribution analysis is presented for fault diagnosis by integrating the nearest in-control neighbor calculation and reconstruction-based contribution analysis. The validity and superiority of the proposed fault detection and diagnosis strategy are then validated through case studies on the Tennessee Eastman benchmark process.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,