Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5004853 | ISA Transactions | 2014 | 7 Pages |
Abstract
The paper is concerned with an overall convergent nonlinear model predictive control design for a kind of nonlinear mechatronic drive systems. The proposed nonlinear model predictive control results in the improvement of regulatory capacity for reference tracking and load disturbance rejection. The design of the nonlinear model predictive controller consists of two steps: the first step is to design a linear model predictive controller based on the linear part of the system at each sample instant, then an overall convergent nonlinear part is added to the linear model predictive controller to combine a nonlinear controller using error driven. The structure of the proposed controller is similar to that of classical PI optimal regulator but it also bears a set-point feed forward control loop, thus tracking ability and disturbance rejection are improved. The proposed method is compared with the results from recent literature, where control performance under both model match and mismatch cases are enlightened.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Jili Tao, Yong Zhu, Qinru Fan,