Article ID Journal Published Year Pages File Type
5005088 ISA Transactions 2012 12 Pages PDF
Abstract
In this paper we propose sliding mode control strategies for the point-to-point motion control of a hoisting crane. The strategies employ time-varying switching lines (characterized by a constant angle of inclination) which move either with a constant deceleration or a constant velocity to the origin of the error state space. An appropriate design of these switching lines results in non-oscillatory convergence of the regulation error in the closed-loop system. Parameters of the lines are selected optimally in the sense of two criteria, i.e. integral absolute error (IAE) and integral of the time multiplied by the absolute error (ITAE). Furthermore, the velocity and acceleration constraints are explicitly taken into account in the optimization process. Theoretical considerations are verified by experimental tests conducted on a laboratory scale hoisting crane.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,