Article ID Journal Published Year Pages File Type
5005271 ISA Transactions 2011 13 Pages PDF
Abstract
Although standards for orifice flow meter design, installation, and calibration are supported herein, noncompliant devices exist in many pilot-, lab-scale, and on-board applications. For these, a common calibration practice is to preserve the ideal square root relation and determine a device specific discharge coefficient value. This work provides theoretical and empirical analyses to support relaxing the square root relation between orifice pressure drop and flow rate for noncompliant devices. The resulting power law relation is shown to improve accuracy, precision, and rangeability. Whether a device specific square root or power law model is used, it requires off-line or in-line calibration data. As such, a power law calibration model may only be useful for on-board and small-scale applications.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , , ,